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ABSTRACT

Star glyphs are a well-researched visualization technique to repre-
sent multi-dimensional data. They are often used in small multiple
settings for a visual comparison of many data points. However, their
overall visual appearance is strongly influenced by the ordering of di-
mensions. To this end, two orthogonal categories of layout strategies
are proposed in the literature: order dimensions by similarity to get
homogeneously shaped glyphs vs. order by dissimilarity to empha-
size spikes and salient shapes. While there is evidence that salient
shapes support clustering tasks, evaluation, and direct comparison
of data-driven ordering strategies has not received much research
attention. We contribute an empirical user study to evaluate the effi-
ciency, effectiveness, and user confidence in visual clustering tasks
using star glyphs. In comparison to similarity-based ordering, our
results indicate that dissimilarity-based star glyph layouts support
users better in clustering tasks, especially when clutter is present.
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1 INTRODUCTION

Data glyphs are compact visual representations of multi-dimensional
data points. Due to their small graphical appearance, they can
be used in various settings like within node-link diagrams [12],
treemaps [14], tables [23], or geographic maps [16]. For instance,
star glyphs are employed in the medical domain [30] and can be
used to show the spatial distribution of food production [28].

Due to their use of visual variables, star glyphs [33] are an ade-
quate choice to encode single data points comprising numerical data.
The glyph’s axes represent the data dimensions, and their lengths
encode numeric values. Since glyphs are versatile, different design
variations of star glyphs emerged in literature. Many have already
been extensively analyzed by the community (e.g., [16], see [17] for
a full enumeration). However, there is not much empirical research
about the effect of axes ordering strategy on visual comparison tasks.

The ordering influences the shape of a star glyph and affects its
readability and similarity judgment [24, 25]. Therefore, we need
(task-based) guidelines to arrange the dimensions in star glyphs [35].

Numerous ordering strategies for star glyphs have been proposed
[3, 4, 15, 22, 24, 25, 29, 35, 37] which can be grouped into similarity-
based (short: SIM), favoring homogeneous shapes, and dissimilarity-
based orderings (short: DIS), emphasizing spikes and salient shapes.
Some approaches also discuss symmetry, monotonicity, convexity
and concavity, feature saliency, and user-driven relationships among
neighboring dimensions. The ordering strategies typically analyze
the relationship among all pair-wise dimensions and then adjust
the axes of every star glyph simultaneously according to a metric
(e.g., SIM or DIS). However, this also means that not all glyphs will
result in the desired shape. In particular, outliers may be encoded by
shapes which the reordering algorithm is trying to avoid.

We address the research question: “Which ordering strategy is
most useful for similarity search and data grouping tasks (clustering)
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using star glyphs?”. According to the task taxonomy by Andrienko
and Andrienko [2], similarity search, and grouping are among the
most common analysis tasks for glyphs [16]. While different strate-
gies have been proposed, they are not yet evaluated by empirical stud-
ies. Klippel et al. [24, 25] evaluated the influence of a star glyph’s
shape in grouping tasks. Although they found out that salient shapes,
e.g., having spikes, can support grouping tasks, they did not apply a
dimension ordering strategy that considers these salient properties.

Sorting the dimensions by dissimilarity favors the spikey-design,
which Klippel et al. states to be promising for grouping. We com-
pare this ordering strategy with the similarity-based design which is
often proposed in the literature [3, 6, 15, 35]. We conducted an em-
pirical user study with 15 participants to evaluate the efficiency, data
clustering quality, noise identification quality, and user confidence
between the two different strategies (first independent variable). Our
results show that star glyphs, ordered by a dissimilarity-based lay-
out, support users better in a clustering task.

Real-world data often contains non-relevant dimensions with clut-
ter and noise that may distort interesting patterns [18]. Additionally,
clusters do often not span across all dimensions but exist only in sub-
spaces [26]. Therefore, we investigate impact of clutter on cluster
identification and reordering strategies as a second independent vari-
able. We use the term clutter dimensions to describe attributes that
do not discriminate clusters but hinder the comprehension of feature
relationships in the data [29]. Therefore, we also investigate the in-
fluence of clutter separately, and in combination with the ordering
strategies. For replicability and reproducibility, the material of the
study (benchmark data, study results, analysis scripts, and code) is
publicly available at https://osf.io/bje89.

2 RELATED WORK

Finding an optimal star glyph axes ordering has proven to be NP-
complete [3] and more research is required [31,35]. It is related to the
ordering of axes in parallel coordinates [3, 11, 21, 34, 38], RadViz [1,
9, 10, 20], ArcViz [27], and other axes-based radial visualizations as
summarized by Behrisch et al. [5]. Ordering algorithms typically
define an objective function, modeling a good dimension order
(according to their interpretation) and apply a heuristic to find an
axes order which maximizes the objective function [35].

2.1 Dimension Ordering Strategies
Different visual characteristics can be subject to shape optimization
when applying specific ordering strategies of the star glyph axes.
Ward [35] summarizes four major strategies which have been ex-
tended by others: user- and data-driven, correlation- and similarity-
driven, spikes and salient shapes, and symmetry-driven.
User-driven dimension orderings enable experts to adjust the shape
of a star glyph based on their domain knowledge [32]. Users can
select a data point to sort the data dimensions with ascending or de-
scending order (data-driven) to reveal patterns between records [35].
Correlation- and similarity-driven strategies improve
star glyphs by adjacent placement of similar axes to support
understanding of clusters, outliers, and relationships [7].
Ankerst et al. propose heuristic algorithms based on similarity for
star glyphs to improve the overall perception [3]. Similarly, Artero
et al. use similarity heuristics of attributes to apply dimension-
ordering and take perceptional aspects as Gestalt Laws into account
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by applying dimension reduction [4]. Yang et al. combine similarity-
based ordering with a hierarchical structure of the dimension to
enable interactive exploration of high-dimensional subspaces [37].
Friendly and Kwan argue that using correlation-based ordering in
star glyphs supports the identification of shape irregularities [15].
The authors did not conduct a survey to underpin their statement.
Spikes and salient shapes such as “has-one-spike” are help-
ful in visual grouping tasks of data points according to Klip-
pel et al [24]. They argue, that concavity is more suitable for
comparability than convexity, which is especially true for the “star”
glyph, due to the large variations between adjacent dimen-
sions. The salience of dissimilar neighboring axes shall en-
hance the comparison speed and help to detect changes.
Klippel et al. showed that the star glyph shape with eight dimen-
sions influences classification tasks [25]. Especially, in contrast to
earlier work that state that similarity-driven orderings improve high-
dimensional visualizations, dissimilarity between neighboring axes
contribute salient properties that are perceptually more noticeable.
Symmetry-driven reordering methods help to reduce
the visual complexity of star glyphs and, therefore, sup-
port comparison tasks by improving memorability [22].
By providing some examples, Peng et al. argue that
orderings with simple and symmetric as well as mono-
tonic shapes of the star glyphs facilitate the identification of value
differences between multiple dimensions [29]. They emphasize that
symmetry and similarity are primary factors to identify patterns. For
this, Gestalt Laws are a solid foundation for perception design [36].
Peng et al. state that star glyphs can be optimized by aligning the
symmetry on the vertical or horizontal axis [29]. An additional ro-
tation optimization step can be included in the pipeline to find the
best global rotation for all star glyphs of a dataset. Rotation can be
applied, e.g., on top of similarity or spike-based ordering.

2.2 Empirical Studies and Research Gap

While many ordering strategies, algorithms, and heuristics have
been proposed star glyph dimension ordering, empirical evaluation
is missing. Previous approaches mainly argue by showing examples
or providing arguments w.r.t. to e.g., Gestalt laws. While this is use-
ful to find differences between strategies, we also need empirical
evidence to directly compare strategies respecting scalability, perfor-
mance, analysis tasks, data characteristics, and user perception [35].

We are only aware of two studies conducted by Klippel et
al. [24, 25]. Their results indicate that spikes and salient shapes
have a positive effect on visual grouping tasks and colored axes pos-
itively affect the processing speed and reduce the negative influence
of shape saliency on rotated data glyphs. However, Klippel et al. did
not directly compare different ordering strategies or evaluated them
against a benchmark. Instead, they designed different star glyph
shapes and analyzed how participants grouped them by their under-
standing of similarity during an exploratory analysis task. In our
study, we aim to close this research gap by comparing two proposed
reordering strategies using a controlled, empirical user experiment.

Figure 1: Comparison of similarity (SIM) and dissimilarity (DIS)
based ordering using the same data records.

3 EMPIRICAL USER STUDY

We evaluate whether a similarity- (homogeneous shape, short: SIM)
or dissimilarity-based layout (spike and salient shape, short: DIS) is
more efficient and effective for a visual clustering task. We designed
our study based on Klippel et al.’s work [24,25]. We adopted the task,
user interface, glyph design (including colored axes), and datasets’
dimensionality (eight dimensions). However, in contrast, we applied
two different reordering algorithms (SIM and DIS) and different
clutter levels as independent factors, and evaluate the results using a
benchmark dataset.

3.1 Experimental Design and Hypotheses

The participants had to manually assign star glyphs into reasonable
clusters and identify noise, i.e., items not belonging to any cluster.
In the study, we used the term group instead of cluster. To assess
the performance, we use four dependent variables as quality mea-
sures: (i) task completion time, (ii) quality of groups, (iii) quality of
identified noise, and (iv) the confidence of the participants.
Participants. We recruited 15 participants from the local student
population (seven female, two bachelor, twelve master, one PhD
student). The age ranged from 20 – 27 years with a median of 23.
The participants had a different background in data analysis and
visualization: ten had general knowledge in data analysis, four had
data visualization experience, and one has used star glyphs before.
All participants received a compensation of 10 EUR.
Glyph Design and Implementation. The glyphs are de-
signed analog to Klippel et al.’s work [24, 25] using a con-
tour, gray background, and colored axes. We used Col-
orBrewer [19] to select diverging colors and applied the
ordering algorithm by Ankerst et al. [3]. The Euclidean distance
is used to measure the (dis)similarity between dimensions. We ran
an exhaustive search to find the permutation with the highest (SIM)
and lowest (DIS) similarity. An example of star glyphs with the
two orderings is depicted in Fig. 1. Orientation (rotation) of the star
glyphs is not considered and chosen randomly. All orderings are pre-
computed not to influence the run time during the study. We provide
the study and the ordering strategy implementation on our websites1.
Hypotheses. We address the following two hypotheses:
H1. Clutter negatively influences visual comparison. With increas-
ing clutter, the performance of grouping tasks drops, independent
of the axes ordering. In particular, we expect users to be (a) slower,
(b) less accurate in grouping accuracy, (c) less accurate in noise
identification, and (d) less confident of their grouping.
H2. Klippel et al. [24, 25] argue that spikes and salient shapes
support users in similarity estimation and grouping tasks. Therefore,
the performance of users should increase with a dissimilarity-based
ordering. Furthermore, we hypothesize that the salient shapes should
support users even more if the data contains clutter since sharp edges
are more perceptually apparent. In particular, we expect users to be
(a) faster, (b) more accurate in grouping accuracy, (c) more accurate
in noise identification, and (d) more confident of their grouping
when dimensions are ordered by dissimilarity.

3.2 Benchmark Datasets

We manually created 18 different datasets using the PCDC tool [8].
Every dataset contains 50 records of which 2–7 data points are
selected as noise (randomly distributed across all dimensions). The
remaining data points are grouped into 2, 3, or 4 clusters with similar
cluster sizes. Besides, we introduced clutter dimensions which do
not discriminate any cluster, since we uniformly distributed all data
points across the clutter dimensions. 6 datasets contain no clutter
(0C), 6 one- (1C), and 6 two clutter dimensions (2C). For instance,
in condition 2C a dataset consists of six dimensions discriminating
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Figure 2: Study prototype. Users can group visually similar star
glyphs using drag&drop. Noise points remain in the left panel.

the cluster, while the remaining two introduce clutter. Thus, we
generated the datasets to keep the number of dimensions consistent.
To verify the manually created clusters, we run a DBSCAN [13]
(parameters: minPts = 3, ε = 0.5) on all datasets.

3.3 Tasks, Procedure, and Data Analysis

Tasks and Procedure. Each study took an hour on average. Partici-
pants filled out a consent form, demographics, and report on previ-
ous knowledge in data analysis, information visualization, and star
glyphs. Afterward, we described how to read the visual encoding
of a star glyph using an artificial car dataset as an example. Specifi-
cally, we clarified that star glyphs with similar shapes on different
axes are not similar (rotation invariance). Finally, the participants
performed three training trials before the study was recorded.

To conduct the study, we used a 27-inch screen with 2560x1440
resolution and a mouse to execute given tasks. Every participant had
to perform 18 trials, leading to 15 participants×18 trials=
270 trials for the entire study. In between two trials, we showed
a blank screen with the term ‘break’ to motivate the participants to
have regular breaks. Each trial consisted of manually grouping all
50 star glyphs of one dataset into distinct groups and noise. Then,
the participants stated the confidence level about their selection on a
7-point Likert-scale. We did not provide the number of clusters per
dataset and explicitly told the participants that there might be glyphs
which do not belong to any group (noise).

Fig. 2 shows our interface. Participants were able to add new or
delete groups. Glyphs can be interactively assigned to groups by
drag&drop. If a glyph was considered to be noise, then it remained
in the left panel. Participants were able to undo or change a group-
ing also using drag&drop. In the study, we did not constrain the task
completion time. We ended the study with an interview about the
participants’ strategy and preferences regarding the SIM and DIS or-
dering by showing examples. Questions and answers were recorded.
Randomization. Each participant performed 18 trials, i.e., the
grouping task on all benchmark datasets was equally distributed be-
tween SIM and DIS. We randomized the order of the trials as follows:
First, we grouped the datasets into their level of difficulty based on
the amount of clutter (0C, 1C, 2C). Then, participants performed the
trials with increasing difficulty, i.e., 6 × 0C, then 6 × 1C, and finally
6 × 2C. For every clutter condition, we randomized the dataset order
and randomly assigned 3 × SIM and 3 × DIS. We attached the ran-
domization algorithm and our configuration in the supplementary
material. A summary of our trials:

3 levels of difficulty (clutter: 0C, 1C, 2C) ×
2 ordering strategies (SIM, DIS) ×
3 trials (2, 3, 4 clusters) ×

15 participants =
270 trials in total

Data Collection, Post-Processing, and Analysis. In each trial, we
recorded the grouping task completion time, the selected groups and
noise, and the participants’ confidence. Some participants created
groups with only one or two glyphs. Thus, in a post-processing
step, we converted such small groups into noise to execute a more
coherent analysis. We measured the quality of the identified noise by
computing the Jaccard index between noise and ground truth noise.

Figure 3: Cluster quality analysis. Difference between clutter
dimensions 0C, 1C, and 2C as well as DIS and SIM ordering.

The grouping quality is also based on the Jaccard index between the
grouping and ground truth. However, since participants could have
also selected too few or too many groups, we structured our quality
computation as a two-step process: First, we computed the average
Jaccard index of each group to its best match in the ground truth.
Second, we computed the average Jaccard index of every ground
truth cluster to its best match in the selection. Using this method,
we considered too few, too many groups, as well as too few and too
many records per group. The final clustering quality is the average
score of both steps.

3.4 Results and Statistical Analysis
We executed a statistical analysis to summarize the study results. We
report all statistically significant findings (p < .05) and some inter-
esting trends visible in the data. We check for normal distribution
using a one-sample Kolmogorov-Smirnov test. For a better compar-
ison, we always report the median (x̄) and, additionally, the mean
(µ) for normally distributed samples. Analysis scripts and detailed
results can be found in the supplementary material.
Statistical tests. Confidence is measured as Likert-scale. Therefore,
a Pearson’s Chi-squared test is used for the analysis. Given the non-
normal nature of the measures time, cluster quality, and noise iden-
tification quality w.r.t. 0C, 1C, and 2C, we used a non-parametric
Friedman’s test and a Wilcoxon signed rank test with Bonferroni
correction (Post-hoc). The same measures do also not follow a nor-
mal distribution w.r.t. the strategies SIM and DIS. Hence we used a
Wilcoxon signed rank test with continuity correction. Considering
SIM and DIS within 1C and 2C reveal normal distributed samples for
the measures time, quality of clustering, and quality of noise identifi-
cation. Hence, we use a paired t-test for the statistical analysis.
Task Completion Time.
H1a. Task completion time increased with clutter levels, but not
significantly: 0C (x̄ = 162.5s), 1C (179.5s), and 2C (184.0s).
H2a. Using the ordering DIS (176.0s) users completed the grouping
task slightly faster than SIM (178.0s), but only for datasets with
clutter dimensions. 0C: DIS (168.0s) vs. SIM (158.0s), 1C: 180.0s /
179.0s, and 2C: 180.0s / 190.0s. Differences are not significant.
Cluster Quality.
An overview of the cluster quality is depicted in Fig. 3.
H1b. There were significant effects of clutter level on cluster qual-
ity (χ2(2,N = 270) = 109.92, p < .001). Post-hoc tests showed a
higher participants’ accuracy with 0C (x̄= 0.85) compared to 1C (.67,
p< .001) and 2C (.55, p< .001), and between 1C and 2C (p< .001).
H2b. When comparing ordering strategies, participants were more
accurate with DIS (x̄ = .69) compared to SIM (x̄ = .67, p < .05),
which is also true within clutter levels 1C and 2C, but not 0C. 0C:
DIS (x̄ = .85, µ = .81) vs. SIM (x̄ = .85, µ = .82), 1C: DIS (x̄ = .68,
µ = .66) vs. SIM (x̄ = .66, µ = .63), 2C: DIS (x̄ = .58, µ = .57) vs.
SIM (x̄ = .52, µ = .50, p < .001).



Noise Identification Quality.
H1c. There was a significant effect of clutter level on noise identifi-
cation (χ2(2,N = 270) = 80.02, p < .001). Post-hoc tests revealed
that participants were more accurate with 0C (x̄= .8) compared to 1C
(x̄ = .5, p < .001) and 2C (x̄ = .33, p < .001). In addition, there was
a significant effect between clutter conditions 1C and 2C (p < .001).
H2c. In general, there is no difference between SIM and DIS w.r.t.
noise identification quality (both x̄ = .5) There are no differences
for 0C (both µ = .77, DIS x̄ = .88, SIM x̄ = .8) and 1C (both x̄ = .5,
µ = .52). But for the 2C clutter condition, there was also a significant
effect of ordering strategy on noise identification (t(44) = 2.18,
p = .05). Participants working with DIS were more accurate (x̄ = .4,
µ = .39) in comparison to SIM (x̄ = .33, µ = .32, p < .05).
Confidence.
H1d. There was a significant effect of clutter level on confidence
(χ2(2,N = 270) = 28.816, p < .005). Post-hoc tests revealed a
higher confidence with 0C (x̄ = 2) compared to 2C (1, p < .001).
H2d. There is no significant effect between SIM (1) and DIS (1).
While there is also no effect within the different clutter levels (0C:
2/2, 1C: 1/1, and 2C: 1/1), there seems to be a tendency that partic-
ipants are more confident with SIM without clutter dimensions and
more confident with DIS with increasing clutter.

3.5 Quantitative User Feedback

Ordering Preferences. 11 out of 15 participants reported that they
could see the clusters more clearly with dissimilarity reordering
because they could use the orientation of the spikes as a determining
factor. Some participants reported that they generally found the
grouping tasks challenging, and they were not quite sure about the
results. Interestingly, most of them said to have personal preferences
towards the patterns with more smooth and convex shapes, namely
the patterns produced by similarity reordering.
Similarity Estimation Strategies. The strategies reported by the
participants can be grouped into three categories: (1) the majority of
participants focused primarily on the spikes’ orientation; (2) partici-
pants reported that they tried to find the center of a star glyph, and
observe at which position of the glyph the center lies and how the
gray area around the center is shaped; (3) a few participants searched
for unique shape-parts and matched it with others.

4 DISCUSSION & FUTURE WORK

In summary, our study revealed two major findings.
Clutter Analysis. Clutter negatively influences the visual compar-
ison of star glyphs. There is a significant drop in cluster quality,
noise identification quality, and confidence with an increasing num-
ber of clutter dimensions. Also, task completion time changed con-
siderably, although not statistically significant. Therefore, we can
partially confirm our hypotheses H1a – H1d.

We expected these results as more clutter hampers similarity
estimation in clustering tasks. As a result, cluster performance drops.
While this is a general problem in information visualization [18],
it particularly affects star glyphs as clutter may change their shape
considerably. Glyph designers should, therefore, think of using
automatic algorithms to remove clutter dimensions, if possible.
Ordering Analysis. There are differences between the two evalu-
ated ordering strategies. Generally, the quality of the clustering was
significantly more accurate with DIS, in particular for datasets con-
taining clutter (1C, 2C). Participants also performed the task slightly
faster using DIS. However, they were on average 10 seconds faster
with SIM in non-cluttered datasets. We can see that DIS significantly
supports noise identification for a cluttered dataset (2C), but we can-
not see a difference for the other clutter conditions. While many par-
ticipants reported that they prefer a dissimilarity-based layout, we
cannot see a significant result from the study. However, analyzing
the Likert-scale distributions reveal a tendency that participants are

more confident with SIM for clutter-free datasets (0C) and with DIS
for cluttered datasets (2C). Across all trials, we can confirm the hy-
potheses H2b and H2c, but completion time (H2a) and confidence
(H2d) depend on the properties of the dataset.

These results are in line with Klippel et al. [24, 25]. We found
it interesting that the difference between SIM and DIS is even more
striking in cluttered datasets. The spikes seem to help users in
identifying clutter dimension and improving the overall clusters.
However, we could also see that, without clutter, participants were
faster and more confident using a similarity-based ordering. The
remaining question is whether it would be possible to combine SIM
and DIS into a combined ordering strategy. Our study did not reveal
whether participants need as many spikes as possible or whether
a few important spikes are enough to improve the cluster quality.
Further research needs to be done in this area. Another relevant
question is also how the rotation of entire glyphs influences grouping
quality in clustering tasks and further investigation in this direction
is advisable as, for example, already started by Fuchs et al. [16].

Design Considerations. With the results gained from our study, we
derive the following design considerations:
(1) As the performance of users drop considerably when clutter
dimensions are present, glyph designers should try to avoid clutter
by applying a feature selection method first, if possible.
(2) Since, for datasets with clutter, salient shapes and spikes support
grouping tasks, we recommend using DIS strategies.
(3) For datasets without clutter, we did not find a clear difference
between SIM and DIS. As SIM seem to be slightly faster and less
error prone to rotation [24, 25]. We recommend to use this strategy.

Limitations. We identified two main threats to our results’ validity.
(1) The number of trials (270) is rather small, in particular, for
the effectiveness and efficiency analysis of a specific clutter level.
This affects not only the statistical analysis, but outliers may also
distort the results. The number of trials per participant cannot be
increased with the current study design; otherwise, the study would
take much longer than one hour. Therefore, we suggest repeating
the study with more participants to increase the number of trials.
(2) While we designed our datasets with different cluster structures
and distributions, we limited them by eight dimensions as Klippel et
al. [25]. There might be differences for datasets with less, more, or
an odd number of dimensions.

5 CONCLUSION AND FUTURE WORK

We conducted an empirical user study to evaluate the impact of
clutter and axes ordering to clustering performance with star glyphs.
Our results show that users perform better when the glyphs represent
salient shapes and spikes, which is achieved by a dissimilarity-based
ordering of the dimensions. Furthermore, we elicited that there is a
significant impact of clutter on the clustering performance in general.

As future work, we plan to extend and re-run the study based
on our discussed limitations and include other reordering strategies,
as well. Extending to that, we want to investigate whether there
is an influence of the data characteristics and rotation (e.g., favor
symmetrical glyph shapes) to the ordering strategy. If so, we are
interested in developing techniques to select the most useful ordering
strategy based on the given data and task. Finally, automatic ordering
strategies should be compared to user-driven axes arrangements,
which are determined by experts based on their domain knowledge.
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